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The paper demonstrates that the concept of turbulent constitutive relations introduced

by Lumley (1970) can be used to construct general models for various turbulent corre-

lations. Some of Generalized Cayley-Hamilton formulas for relating tensor products of

higher extension to tensor products of lower extension are introduced. The combination

of dimensional analysis and invariant theory can lead to "turbulent constitutive relations"

(or general turbulence models) for, in principle, any turbulent correlations. As examples,

the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results

are consistent with ones from RNG theory and two-scale DIA method, but with a more

general form.

I. Introduction

Lumley 1 discussed some possible constitutive relations for turbulent correlations. One

of his conclusions was that turbulent constitutive relations may exist under situations in

which the length and time scales of turbulence are smaller than those in the mean flow field

so that the effect of initial and boundary conditions on the turbulence is not significant.

For example, if an unbounded mean flow evolves slowly in both time and space, there

may exist a constitutive relation for turbulent correlations (e.g., Reynolds stresses) which

may help to solve the turbulence closure problem in this particular sltuation. However, in

most practical situations, the scales of turbulence are of the same order of magnitude as

those of the mean flow field, hence so called turbulent constitutive relations do not exist,

and the turbulence closure problem cannot be theoretically solved. The formally derived

"turbulent constitutive relations" become at most approximations (turbulence models)

to the turbulent correlations whose validity varies from flow to flow. Regardless of the

existence of turbulent constitutive relations, the formal procedure of deriving constitutive

relations developed in continuum mechanics provides an useful tool for developing general

turbulence models.



A constitutive relation developed in continuum mechanics is always of an equilibrium

and local form, that is, it is a function of arguments at the present time and the local

point. This is, of course, not true for most turbulent flows. For a general turbulent flow,

a constitutive relation should contain the time history and spatial information for the

arguments in question. However, as a modal approximation, we always neglect time and

spatial effects and consider the relationship at the present time and the local point as the

first order approximation in the time and spatial expansions of the functional form.

The procedure for deriving a constitutive relati6n usually includes two steps. The first

step is to make an assumption about the general relationship between the turbulent corre-

lation and other "known" quantities (which are the arguments of the function) using the

information from whatever observations or experience we have. At this stage, dimensional

analysis (z, theorem) can be used to regroup and reduce the number of independent argu-

ments in question. The second step is to determine the detailed form of the relationship

using invariant theory.

In the application of invariant theory, the most important procedure is to determine the

number of independent invariants. This determination will become more complicated

if the arguments in question have more than two tensors. The number of independent

invariants depends on the number of independent tensors which it is possible to form using

the arguments in question. In this paper, we shall show a procedure for determining the

independent tensors which can be formed by two general tensors using generalized Cayley-

Hamilton formulas. Thereafter, as an example, we shall briefly derive a constitutive reIation

for the turbulent Reynolds stresses. A possible constitutive relation for the scalar flux is

also given. This approach can be extended to more complicated turbulent correlations, for

example, the high order turbulent corrdations appearing in the transport equations of the

second order moments.

II. Generalized Cayley-HamUton formulas

Rivlin _ showed that there are several generalized Cayley-Hamilton formulas relating ma-

trices (product of several matrices .4, B, C ...) of higher extension to matrices of lower

extension. Here, we follow Rivlin to derive some relations of this type which will be used

latter.
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One of Rivlln's basic relations is

(ABC + ACB + BCA + BAC + CAB + CBA) - A(trBC - trB trC)

- B(trCA - trC trA) - C(trAB -trA trB)

- (BC + CB)trA - (CA + AC)trB - (AB + BA)trC

- I(trA trB trC -trA trBC - trB trCA

-trC trAB + trABC + trCBA)-O

where I is the unit matrix or identity tensor and tr represents the trace operator.

(1)

Replacing C with A in Eq.(1), we obtain

ABA=-A2B - BA 2 + A(trAB - trA trB)

+ 21 B(trA_ _trA trA)+ (AB + BA)trA + A2trB (2)

+ I[trA2B -trA trAB + 2trB(trA trA- trA2)]

Replacing C with B in Eq.(1), we obtain

BAB=-B2A - AB 2 + B(trBA - trB trA)

+ 21 A(trB2 _ trB trB) + (BA + AB)trB + B2trA (3)

+ I[trB2A - trB trBA + 2trA(trB trB - trB2)]

Eqs.(2) and (3) indicate that the matrices ABA and BAB of extension 3 can be expressed

by polynomials of matrices of extension 2 or less.

Multiplying Eq.(2) by A both on the left and on the right, and then adding the results,

we obtain

ABA 2 + A2BA =ABA teA + A 2 trAB + A(trAZB - teA trAB)
(4)

- B detA + I detA feB

where det is the determinant operator. Multiplying Eq.(3) by B on the left and on the

right, and then adding the results, we obtain

BAB 2 + B_AB =BAB trB + B 2 trBA + B(trB2A - trB trBA)
(5)

- A detB + I detB trA

It follows from Eqs.(2) and (3) that the right hand side of Eqs.(4) and (5) is a polynomial

of matrices of extension 2 or less.
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Replacing B with B 2 in Eq.(4), we obtain

AB2A 2 + A2B2A =ABSA trA + A s trAB s + A(trASB s -

- B s detA + I detA trB 2

trA trAB s)
(6)

Replacing A with A s in Eq.(5), we obtain .........

BAUB s + BSASB =BASB trB + B 2 trBA s + B(trB2A s

- A s detB + I deIB trA s

Replacing B with B 2 in Eq.(2), we obtain

ABSA = -ASB s _

1 BS(trA s

- trB trBA s)

BSA s + A(trAB s - trA irB s)

-trA trA) + (AB2 + B2A)trA + A2trB s

+ I[trA s B s

Replacing A with A s in Eq.(3), we obtain

BA2B = _BSA 2 _

1 AS(trB s

1 S

- trA trAB 2 + -_trB (trA trA - trAS)]

ASB s + B(trBA s - trB trA 2)

- trB trB) + (BAS+A2B)trB + BStrA s

+ Z[trBSA s - feB trBA 2 + ltrAS(trB trB- trB')]

(7)

(8)

(9)

Eqs.(8) and (9) indicate that the matrices ABSA and BA2B of extension 3 can be expressed

by polynomials of matrices of extension 2 or less. As a result, the right hand sides of Eqs.(6)

and (7) axe also polynomials of matrices of extension 2 or less.

III. Number of independent tensors formed by two general tensors

Now let us show that the number of independent tensors formed by two general tensors A

and B is 18.

Pdvlin 2 showed that any matrix product in two 3 x 3 matrices may be expressed as a

polynomial of these matrices of extension 4 or less. For example, suppose we have a

matrix product II of extension 5:

II = ABASB2A (I0)
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TMs can be written as

II= ACA (11)

where C = BA2B 2. From Eq.(2), II may be viewed as a polynomial of matrices in A and

C of extension 2 or less. Note that C itself is a matrix in A and B of extension 3, therefore,

II may be expressed by a polynomial in A, B of extension 4 or less. Therefore, we only

need to consider the possible matrices (or tensors) of extension 4 or less formed by A and

B.

We now show that there are only two independent tensors of extension 4. The possible

tensors of extension 4 are the following 8 tensors:

ABA_B 2, BAB2A _-, A2BAB 2, B2ABA 2,

AB2A2B, BA2B2A, A2B2AB, B2A2BA.
(12)

With Eqs.(4) and (2), A2BAB 2 can be expressed by ABA2B 2 plus a polynomial in A and

B of extension 3 or less. Similarly, with Eqs.(5) and (3), B2ABA 2 = -BAB2A 2 + poly-

nomial in A and B of extension 3 or less, with Eqs.(7) and (9), AB2A2B = -ABA2B 2 +

polynomial in A and B of extension 3 or less, with Eqs.(6) and (8), BA2B2A = -BAB2A 2

+ polynomial in A and B of extension 3 or less. From Eqs.(4) and (5), we may show that

A2B2AB = ABA2B _ + polynomial in A and B of extension 3 or less, and that B2A2BA

= BAB2A 2 + polynomial in A and B of extension 3 or less. Therefore, only two tensors

of extension 4 in Eq.(12) are independent, we select them as

ABA2B 2, BAB_A 2 (13)

Now we show that there are only four independent tensors of extension 3. The possible

tensors of extension 3 are the following 8 tensors:

ABA 2, A2 BA, B AB 2, B2 AB, AB2 A 2, A2 B2 A, BA2 B 2, B2 A2 B (14)

Using Eqs.(4), (5), (6) and (7), we find that only four of them in Eq.(14) are independent.

Let us select them as

ABA 2, BAB 2, AB 2 A s, BA 2 B 2 (15)

There are eight possible tensors of extension 2 which are all independent:

AB, BA, AB 2, B2A,

A2B, BA 2, A2B 2, B_A 2.
(16)



There are four possible tensors of extension 1 which are also independent:

A, A 2, B, B 2. (17)

Therefore, we have proved that only 18 tensors can be formed independently by two general

tensors.

IV. Constitutive relation for Reynolds stresses uiuj

We assume

which indicates that the turbulent stresses depend on the mean velocity gradient Uij and

the scales of turbulence characterized by the turbulent kinetic energy k and its dissipation

rate e. Applying the lr theorem, the arguments can be regrouped as

Accordingly, we may write

2k

Noting that Aij is a general tensor, if we define its transpose as

B,j= =  Vj,, (18)

then, B _t A. In order to obtain a general relationship, we first look for a general tensoriai

form of Fij(Aij,Bij), then replace Bij by AT,_. We have proven that the independent

tensors formed by A and B are the following 18 tensors:

A, A 2, B, B _ ,

AB, BA, AB 2, A2 B, BA 2, B2 A, A2 B _, B 2 A 2, (19)

ABA 2 , BAB 2 , AB2 A _, BA2 B _,

ABA2B 2 , BAB2A 2.

Following Lumley s and applying invariant theory, we may obtain

uiuj
2-'-"k = al'5_'i + a_A + asB + a4A 2 + asB 2

+ asAB + a.tBA + asAB 2 + agA2B

+ aaoBA _ + aaaB2A + aa2A2B 2 + aasB_A 2

+ aa4ABA 2 + aIsBAB 2 + alnAB2A 2 + aa.tBA2B _-

+ alsABA2B 2 + aagBAB2A 2

(20)
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where al - a19 are scalar functions of the invariants of the tensors in question.

Using the conditions: uiuj = ujui, uiui = 2k and Bij = A_ = Aji, we obtain

a2 "-- 0,3, a4 = 0.5_ a8 = ag, alO "- all_

Q14 = 0.15 _--- 0,16 "- 0,17 _- a]8 -- 0,19 -" 0

(21)

and

Therefore, we obtain

1 [1 - 2a2A. - 2a4AijBij - (an + aT)AijBjl

2 2
-2(as + alo)AijB_,- (a12 + a1_)AijBji]

(22)

(23)

where

II = UijUj,i , fI = UijUij , _I = UijU_j , II = U?,,,.U?.,,, (24)

It is noticed that the first two terms on the right hand side of Eq.(23) represent the

standard k-¢ eddy viscosity model, and that the first five terms of Eq.(23) are of the same

form as the models derived from both the two-scale DIA approach (Yoshizawa 4) and the

RNG method (Rubinstein and BartonS).

Eq.(23) is a general model for uiuj. It contains 8 undetermined coefficients which are, in

general, scalar functions of various invariants of the tensors in question, for example, SijSij

and ftOf_ j which are (II + 1I)/2 and (II - 11)/2 respectively. The detailed forms of these
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scalar functions must be determined by other model constraints, for example, realizability,

and by experimental data. Eq.(23) contains 9 terms; however, its quadratic tensorial form

may be sufficient for practical applications, expedally when [U_jlk/e is less than one.

m

V. Constitutive relation for Scalar Flux Oui

We assume

o%Z= F_(V_,j,T,_,k,c,O-_,eo) (25)

where 0-_ is the variance of a fluctuating scalar and _0 is its dissipation rate. Eq.(25)

indicates that the scalar flux depends on not only the mean scalar gradient T,i, but also

the mean velocity gradient Uid and the scales of both velocity and scalar fluctuations

characterized by k, e, 0 z, e0.

Applying the _" theorem, we have:

t. k
A,j= =U,,j, O,,= T,,, , = -/--

Accordingly, we may write

o_,_= F_(A_j,O,.r) (26)
(_k)I/2

Using mrguments similar to the ones made above for Reynolds stresses,we obtain

__ .kO-2,1/2T, ' k 2 k____oOu, = a_k(gFo ) • + --(_ )_/_(,,_U,,_ + a_Uj,i)T,j

kS (k

+-_t_] tastJi,k,.,j,_ +
(27)

ks,k0Txl/2z rr2 rr2 a rr2 rr2
+ fi(_0) ta12_i,k_j,_ + _,_k,_

k s k02,1/2, -, ,,_ rr_ _

Jr -_(_-_0 ] ta16t/i,kt/£,ke/£,j -_- a17Uk,iUk,tUj, _

The coefficientsal - a_s are, in general, functions of the time scale ratior and the other

invariants of tensors in question.



If we assume the time scale ratio r _ constant, for example, O-'f/ee _ k/e, then Eq.(27)

becomes

k 2 k 3

k 4

+ _(a4U_,kUk,j + asUj,kUk,_+ a_U_,kUj,k+ aTUk,_k,j ) rj

(28)
k6 2 2 2 2

+ -_(a_2_i,kUj,k + a_3Uk,_Uk,j

+ a_,V_,_t,_I,j + a_,_k,_,t ) r j

kT/ rr rr2 U2 _ rr rr2 U2
q- -_a]6ui,kt/t,k t,j q- _lrVk,it/k,t j,t

It is interesting to note that the conventional eddy viscosity model for the scalar flux is

just the first term on the right hand side of Eq.(27) or (28), and that the models derived

from two-scale DIA (Yoshizawa s) and RNG method (Rubinstein and Barton _) are the first

two terms of Eq.(28).

VI. Conclusion

We have demonstrated that the combination of dimensional analysis and invariant the-

ory is a powerful tool for developing "turbulent constitutive rdations" (or general turbu-

lence models) for various turbulence corrdafions. The way of forming generalized Cayley-

Hamilton formulas for determining independent tensors is also shown. As examples, the

general turbulence modds for Reynolds stresses and scalar fluxes are derived. The results

from RNG theory and the two-scale DIA method are the first few terms of the constitu-

tive relations derived in this paper. This technique can be extended to other turbulence

correlations including higher order correlations appearing in second order closures.
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